Weighted Neural Bag-of-n-grams Model: New Baselines for Text Classification
نویسندگان
چکیده
NBSVM is one of the most popular methods for text classification and has been widely used as baselines for various text representation approaches. It uses Naive Bayes (NB) feature to weight sparse bag-of-n-grams representation. N-gram captures word order in short context and NB feature assigns more weights to those important words. However, NBSVM suffers from sparsity problem and is reported to be exceeded by newly proposed distributed (dense) text representations learned by neural networks. In this paper, we transfer the n-grams and NB weighting to neural models. We train n-gram embeddings and use NB weighting to guide the neural models to focus on important words. In fact, our methods can be viewed as distributed (dense) counterparts of sparse bag-of-n-grams in NBSVM. We discover that n-grams and NB weighting are also effective in distributed representations. As a result, our models achieve new strong baselines on 9 text classification datasets, e.g. on IMDB dataset, we reach performance of 93.5% accuracy, which exceeds previous state-of-the-art results obtained by deep neural models. All source codes are publicly available at https://github.com/zhezhaoa/neural_BOW_toolkit.
منابع مشابه
Character-level Convolutional Networks for Text Classification
This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several largescale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and de...
متن کاملA Joint Semantic Vector Representation Model for Text Clustering and Classification
Text clustering and classification are two main tasks of text mining. Feature selection plays the key role in the quality of the clustering and classification results. Although word-based features such as term frequency-inverse document frequency (TF-IDF) vectors have been widely used in different applications, their shortcoming in capturing semantic concepts of text motivated researches to use...
متن کاملNeural Bag-of-Ngrams
Bag-of-ngrams (BoN) models are commonly used for representing text. One of the main drawbacks of traditional BoN is the ignorance of n-gram’s semantics. In this paper, we introduce the concept of Neural Bag-of-ngrams (Neural-BoN), which replaces sparse one-hot n-gram representation in traditional BoN with dense and rich-semantic n-gram representations. We first propose context guided n-gram rep...
متن کاملSentiment Classification with Supervised Sequence Embedding
In this paper, we introduce a novel approach for modeling n-grams in a latent space learned from supervised signals. The proposed procedure uses only unigram features to model short phrases (n-grams) in the latent space. The phrases are then combined to form document-level latent representation for a given text, where position of an n-gram in the document is used to compute corresponding combin...
متن کاملA New Method of Region Embedding for Text Classification
To represent a text as a bag of properly identified “phrases” and use the representation for processing the text is proved to be useful. The key question here is how to identify the phrases and represent them. The traditional method of utilizing n-grams can be regarded as an approximation of the approach. Such a method can suffer from data sparsity, however, particularly when the length of n-gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016